更多>>精华博文推荐
更多>>人气最旺专家

徐陵

领域:北京热线010

介绍:这就要求我们()①解放思想,破除一切传统观念②在思维过程中,要进行合理想象,大...

刘允

领域:岳塘新闻网

介绍:B.在关系国民经济命脉的重要行业和关键领域,国有经济必须占支配地位。利来国际老牌,利来国际老牌,利来国际老牌,利来国际老牌,利来国际老牌,利来国际老牌

利来w66
本站新公告利来国际老牌,利来国际老牌,利来国际老牌,利来国际老牌,利来国际老牌,利来国际老牌
g3q | 2019-01-20 | 阅读(813) | 评论(710)
2ClO2+10I-+8H+=2Cl-+5I2+4H2O(2016全国2卷)(5)丁组同学向盛有H2O2溶液的试管中加入几滴酸化的FeCl2溶液,溶液变成棕黄色,发生反应的离子方程式为。【阅读全文】
利来国际老牌,利来国际老牌,利来国际老牌,利来国际老牌,利来国际老牌,利来国际老牌
hy3 | 2019-01-20 | 阅读(313) | 评论(897)
而对这种“思维定式”的有意识破除,则可使人们产生出许多新的发明和创造。【阅读全文】
mjl | 2019-01-20 | 阅读(596) | 评论(126)
绿色圃中学资源网有的人说:“得造一杆大秤,砍一棵大树做秤杆。【阅读全文】
ne4 | 2019-01-20 | 阅读(655) | 评论(876)
(2)研究方法:同位素标记法蛋白质的组成元素:DNA的组成元素:C、H、O、N、SC、H、O、N、P(标记32P)(标记35S)①标记噬菌体方法:在分别含有放射性同位素32P和35S的培养基中培养细菌分别用上述细菌培养T2噬菌体,制备含32P的噬菌体和含35S的噬菌体侵入别的细菌注入核酸合成核酸和蛋白质吸附装配释放噬菌体侵染细菌的过程:它侵染大肠杆菌后,如何合成自身组成成分(DNA和蛋白质)?谁提供原料场地?噬菌体侵染细菌实验(2)T2噬菌体增殖(复制式繁殖)模板:噬菌体DNA合成DNA的原料:大肠杆菌提供的四种脱氧核苷酸原料:大肠杆菌的氨基酸场所:大肠杆菌核糖体合成蛋白质离心被35S标记的噬菌体上清液的放射性很高在新的噬菌体中没有35S离心被32P标记的噬菌体上清液的放射性很低(2)噬菌体侵染细菌的实验搅拌使与细菌分离沉淀物的放射性很高在新的噬菌体中有32P搅拌使与细菌分离步骤:标记、侵染、搅拌、离心、检测和记录结果阅读教材P44-P45的内容问题1.科学家为什么把噬菌体作为研究DNA是遗传物质的材料问题2.科学家是采用什么方法进行研究的问题3.用35S,32P分别标记什么?为什么这么标记?问题4.搅拌,离心的目的分别是什么?上清液中的是什么,沉淀物中的是什么?(T2噬菌体只有DNA和蛋白质两种化学物质组成)(放射性同位素标记法)用35S标记蛋白质,32P标记DNA。【阅读全文】
zws | 2019-01-20 | 阅读(100) | 评论(776)
4、空气中含量最多的气体是,澄清石灰水露置空气中会渐变浑浊,这说明了空气中含有  ;盛有冰水的杯子,放在常温的空气中,外壁会潮湿,这说明了空气中含有   。【阅读全文】
qyp | 2019-01-19 | 阅读(715) | 评论(803)
;海尔的商标是二个天真活泼的小孩形象:一个黑头发,一个黄头发一个是中国儿童,一个是德国儿童。【阅读全文】
3ri | 2019-01-19 | 阅读(700) | 评论(686)
不知天上宫阙,今夕是何年。【阅读全文】
3da | 2019-01-19 | 阅读(225) | 评论(497)
实践证明j木材纤维原料是世界造纸工业的主流原料,只有木材原料的大量使用,’才有造纸工业的高效率和现代化,只有加快木浆造纸发展,才能进一步满足纸张多元化消费需求的增长[61。【阅读全文】
利来国际老牌,利来国际老牌,利来国际老牌,利来国际老牌,利来国际老牌,利来国际老牌
s1x | 2019-01-19 | 阅读(126) | 评论(179)
PAGE习题课——数列求和课后篇巩固探究A组1.已知数列{an}的前n项和为Sn,若an=1n(n+2),则                解析因为an=1n所以S5=a1+a2+a3+a4+a5=12答案D2.已知数列{an}的通项公式an=1n+n+1,若该数列的前k项之和等于9,则解析因为an=1n+n+1=n+1-n,所以其前n项和Sn=(2-1)+(3-2)+…+(n+1-n)答案A3.数列1,2,3,42716,…的前n项和为(  A.(n2+n-2)+(n+1)+1-3C.(n2-n+2)-(n+1)+31解析数列的前n项和为1++2++3++…+n+12×32n-1=(1+2+3+…+n)+12+34+98+…+1答案A4.已知{an}为等比数列,{bn}为等差数列,且b1=0,cn=an+bn,若数列{cn}是1,1,2,…,则数列{cn}的前10项和为(  )解析由题意可得a1=1,设数列{an}的公比为q,数列{bn}的公差为d,则q+d=1,q2+2d∵q≠0,∴q=2,d=-1.∴an=2n-1,bn=(n-1)(-1)=1-n,∴cn=2n-1+1-n.设数列{cn}的前n项和为Sn,则S10=20+0+21-1+…+29-9=(20+21+…+29)-(1+2+…+9)=1-2101-2-答案A5.已知数列{an}满足a1=1,a2=2,an+2=1+解析由题意可得a3=a1+1,a5=a3+1=a1+2,所以奇数项组成以公差为1,首项为1的等差数列,共有9项,因此S奇=9(1+9)2=45.偶数项a4=2a2,a6=2a4=22a2,因此偶数项组成以2为首项,2为公比的等比数列,共有9项,所以S偶=2(1-29)1-2答案D6.已知数列{an}的通项公式an=2n-12n,则其前n项和为解析数列{an}的前n项和Sn=2×1-12+2×2-122+…+2n-12n=2(1答案n2+n+12n7.数列112+3,1解析∵an=1n∴Sn=11=1=1118答案118.已知等差数列{an}的前n项和Sn满足S3=0,S5=-5.(1)求{an}的通项公式;(2)求数列1a2n-1a解(1)设{an}的公差为d,则Sn=na1+n(由已知可得3解得a故{an}的通项公式为an=2-n.(2)由(1)知1a从而数列1a2nTn=1=n19.导学号04994055(2017·辽宁统考)已知等差数列{an}的公差为2,且a1,a1+a2,2(a1+a4)成等比数列.(1)求数列{an}的通项公式;(2)设数列an2n-1的前n项和为Sn,求证:(1)解∵{an}为等差数列,∴a2=a1+d=a1+2,a4=a1+3d=a1+6.∵a1,a1+a2,2(a1+a4)成等比数列,∴(a1+a2)2=2a1(a1+a4即(2a1+2)2=2a1(2a解得a1=1,∴an=1+2×(n-1)=2n-1.(2)证明由(1),知an∴Sn=120+321Sn=121+322①-②,得Sn=1+21=1+2×1=1+2-1=3-4=3-2n∴Sn=6-2n∵n∈N*,2n+3∴Sn=6-2n+32B组1.已知数列{an}的通项公式an=(-1)n-1n2,则其前n项和为(  )                A.(-1)n-1n(n+1)(n+1解析依题意Sn=12-22+32-42+…+(-1)n-1n2.当n为偶数时,Sn=12-22+32-42+…-n2=(12-22)+(32-42)+…+[(n-1)2-n2]=-[1+2+3+4+…+(n-1)+n]=-n(当n为奇数时,Sn=12-22+32-42+…-(n-1)2+n2=Sn-1+n∴Sn=(-1)n-1n(n+1答案A2.已知数列{an}为12,13+23,14+24++1解析∵an=1+2+3+…∴bn=1anan∴Sn=41=41-答案A3.已知Sn是数列{an}的前n项和,a1=1,a2=2,a3=3,数列{an+an+1+an+2}是公差为2的等差数列,则S25=(  )解析令bn=an+an+1+an+2,则b1=1+2+3=6,由题意知bn=6+2(n-1)=2【阅读全文】
am2 | 2019-01-18 | 阅读(999) | 评论(548)
现代型人口平均预期寿命进一步延长,世代更替缓慢,人口结构出现老龄化,死亡率上升。【阅读全文】
zkx | 2019-01-18 | 阅读(903) | 评论(427)
《日本经济》称,由于福岛第一核电站事故影响,中国此前停止进口日本东北地区和新潟等10个都县的全部。【阅读全文】
cy2 | 2019-01-18 | 阅读(718) | 评论(346)
 最大值与最小值学习目标重点难点1.知道函数的最大值与最小值的概念.2.能够区分函数的极值与最值.3.会用导数求闭区间上不超过三次的多项式函数的最大值、最小值.重点:函数在闭区间上的最值的求解.难点:与函数最值有关的参数问题.1.最大值与最小值(1)如果在函数定义域I内存在x0,使得对任意的x∈I,总有______________,则称f(x0)为函数在定义域上的最大值.最大值是相对函数定义域整体而言的,如果存在最大值,那么最大值________.(2)如果在函数定义域I内存在x0,使得对任意的x∈I,总有____________,则称f(x0)为函数在定义域上的最小值.最小值是相对函数定义域整体而言的,如果存在最小值,那么最小值________.2.求f(x)在区间[a,b]上的最大值与最小值的步骤(1)求f(x)在区间(a,b)上的________;(2)将第(1)步中求得的________与______,______比较,得到f(x)在区间[a,b]上的最大值与最小值.预习交流1做一做:函数y=x-sinx,x∈eq\b\lc\[\rc\](\a\vs4\al\co1(\f(π,2),π))的最大值是______.预习交流2做一做:函数f(x)=x3-3ax-a在(0,1)内有最小值,则a的取值范围为______.预习交流3(1)函数的极值与最值有何区别与联系?(2)如果函数f(x)在开区间(a,b)上的图象是连续不断的曲线,那么它在(a,b)上是否一定有最值?若f(x)在闭区间[a,b]上的图象不连续,那么它在[a,b]上是否一定有最值?在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引1.(1)f(x)≤f(x0) 惟一 (2)f(x)≥f(x0) 惟一2.(1)极值 (2)极值 f(a) f(b)预习交流1:提示:∵y′=1-cosx≥0,∴y=x-sinx在eq\b\lc\[\rc\](\a\vs4\al\co1(\f(π,2),π))上是增函数,∴ymax=π.预习交流2:提示:∵f′(x)=3x2-3a=3(x2-af(x)在(0,1)内有最小值,∴方程x2-a=0有一根在(0,1)内,即x=eq\r(a)在(0,1)内,∴0<eq\r(a)<1,0<a<1.预习交流3:提示:(1)①函数的极值是表示函数在某一点附近的变化情况,是在局部上对函数值的比较,具有相对性;而函数的最值则是表示函数在整个定义区间上的情况,是对整个区间上的函数值的比较,具有绝对性.②函数在一个闭区间上若存在最大值或最小值,则最大值或最小值只能各有一个,具有惟一性;而极大值和极小值可能多于一个,也可能没有,例如:常函数就没有极大值,也没有极小值.③极值只能在函数的定义域内部取得,而最值可以在区间的端点取得.有极值的不一定有最值,有最值的不一定有极值,极值有可能成为最值,最值只要不在端点处则一定是极值.(2)一般地,若函数f(x)的图象是一条连续不断的曲线,那么f(x)在闭区间[a,b]上必有最大值和最小值.这里给定的区间必须是闭区间,如果是开区间,那么尽管函数是连续函数,那么它也不一定有最大值和最小值.一、求函数在闭区间上的最值求下列函数的最值:(1)f(x)=-x3+3x,x∈[-eq\r(3),eq\r(3)];(2)f(x)=sin2x-x,x∈eq\b\lc\[\rc\](\a\vs4\al\co1(-\f(π,2),\f(π,2))).思路分析:按照求函数最值的方法与步骤,通过列表进行计算与求解.1.函数f(x)=x3-2x2+1在区间[-1,2]上的最大值与最小值分别是__________.2.求函数y=5-36x+3x2+4x3在区间[-2,2]上的最大值与最小值.1.求函数在闭区间上的最值时,一般是先找出该区间上使导数为零的点,无需判断出是极大值还是极小值,只需将这些点对应的函数值与端点处的函数值比较,其中最大的是最大值,最小的是最小值.2.求函数在闭区间上的最值时,需要对各个极值与端点函数值进行比较,有时需要作差、作商,有时还要善于估算,甚至有时需要进行分类讨论.二、与最值有关的参数问题的求解已知当a>0时,函数f(x)=ax3-6ax2+b在区间[-1,2]上的最大值为3,最小值为-29,求a,b的值.思路分析:先求出函数f(x)在[-1,2]上的极值点,然后与两个端点的函数值进行比较,建立关于a,b的方程组,从而求出a,b的值.若函数f(x)=-x3+3x2+9x+a在区间[-2,2]上的最大值为20,求它在该区间上的最小值.【阅读全文】
yfl | 2019-01-18 | 阅读(985) | 评论(901)
2008年由于经济危机的影响,2008年l~9月,统计数据有待于2008年造纸行业年度报告统计结果)【,1。【阅读全文】
tvb | 2019-01-17 | 阅读(581) | 评论(517)
 导数在实际生活中的应用学习目标重点难点1.学会解决利润最大,用料最省,效率最高等优化问题.2.学会利用导数解决生活中简单实际问题,并体会导数在解决实际问题中的作用.3.提高将实际问题转化为数学问题的能力.重点:用导数解决实际生活中的最优化问题.难点:将实际问题转化为数学问题.导数在实际生活中的应用导数在实际生活中有着广泛的应用.例如,用料最省、利润最大、效率最高等问题,常常可以归结为函数的______问题,从而可用________来解决.预习交流1做一做:有一长为16m的篱笆,要围成一个矩形场地,则此矩形场地的最大面积为______m2.预习交流2做一做:做一个无盖的圆柱形水桶,若需使其体积是27π,且用料最省,则圆柱的底面半径为______.预习交流3用导数求解生活中的优化问题时应注意哪些问题?在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引最值 导数预习交流1:提示:设矩形长为xm,则宽为(8-x)m,矩形面积S=x(8-x)(8>x>0),令S′=8-2x=0,得x=4.此时S最大=42=16(m2).预习交流2:提示:设半径为r,则高h=eq\f(27,r2),∴S=2πr·h+πr2=2πr·eq\f(27,r2)+πr2=eq\f(54π,r)+πr2,令S′=2πr-eq\f(54π,r2)=0,得r=3,∴当r=3时,用料最省.预习交流3:提示:(1)在求实际问题的最大(小)值时,一定要考虑实际问题的意义,不符合实际意义的值应舍去.(2)在解决实际优化问题时,不仅要注意将问题中涉及的变量关系用函数关系表示,还应确定出函数关系式中自变量的定义区间.(3)在实际问题中,有时会遇到函数在区间内只有一个点使f′(x)=0的情形,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知道这就是最大(小)值.一、面积、体积最大问题如图所示,有一块半椭圆形钢板,其长半轴长为2r,短半轴长为r.计划将此钢板切割成等腰梯形的形状,下底AB是半椭圆的短轴,上底CD的端点在椭圆上,记CD=2x,梯形面积为S.(1)求面积S以x为自变量的函数式,并写出其定义域;(2)求面积S的最大值.思路分析:表示面积时,首先要建立适当的平面直角坐标系,借助椭圆的方程,可表示出等腰梯形的高.用总长为的钢条制作一个长方体容器的框架,如果所制作容器的底面的一边比另一边长,那么高为多少时容器的容积最大?并求出它的最大容积.1.求面积、体积的最大值问题是生活、生产中的常见问题,解决这类问题的关键是根据题设确定出自变量及其取值范围,利用几何性质写出面积或体积关于自变量的函数,然后利用导数的方法来解.2.必要时,可选择建立适当的坐标系,利用点的坐标建立函数关系或曲线方程,有利于解决问题.二、费用最省问题如图所示,设铁路AB=50,B,C之间距离为10,现将货物从A运往C,已知单位距离铁路费用为2,公路费用为4,问在AB上何处修筑公路至C,可使运费由A至C最省?思路分析:可从AB上任取一点M,设MB=x,将总费用表示为变量x的函数,转化为函数的最值求解.某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?eq\b\lc\(\rc\(\a\vs4\al\co1(注:平均综合费用=平均建筑费用+平均购地费用,平\b\lc\\rc\(\a\vs4\al\co1(,,,,,))))eq\b\lc\\rc\)(\a\vs4\al\co1(均购地费用=\f(购地总费用,建筑总面积)))1.求实际问题的最大(小)值时,一定要从问题的实际意义去考虑,不符合实际意义的理论值应舍去;2.在实际问题中,有时会遇到函数在区间内只有一个点使f′(x)=0的情形,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知道这就是最大(小)值;3.在解决实际优化问题中,不仅要注意将问题中涉及的变量关系用函数关系式给予表示,还应确定函数关系式中自变量的取值范围,即函数的定义域.三、利润最大问题某汽车生产企业上年度生产一品牌汽车的投入成本为10万元/辆,出厂价为13万元/辆,年销售量为5000辆.本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆车投入成本增加的比例为x(0<x<1),则出厂价相应提高的比例为,年销售量也相应增加.已知年利润=(每辆车的出厂【阅读全文】
1me | 2019-01-17 | 阅读(766) | 评论(114)
目前就已经做好了。【阅读全文】
共5页

友情链接,当前时间:2019-01-20

利来电游彩金 利来国际旗舰厅 利来国际娱乐官方网站 利来网上娱乐 利来国际在线客服
利来国际娱乐 利来国际 利来娱乐国际ag旗舰厅 利来国际家居集团 利来国际w66娱乐平台
利来娱乐老牌 利来电游官方网站 利来娱乐网 w66利来国际 利来国际最给利的老牌
利来国际 利来娱乐老牌 利来国际备用 www.w66.com 利来 利来娱乐老牌
乐昌市| 盈江县| 玛曲县| 桐庐县| 泰和县| 通城县| 泸水县| 黑河市| 宁南县| 东海县| 和政县| 临猗县| 芒康县| 临汾市| 东宁县| 建始县| 炎陵县| 师宗县| 洛川县| 屏东市| 大港区| 夏河县| 五常市| 迭部县| 印江| 绍兴县| 永昌县| 宝鸡市| 梓潼县| 宜川县| 乐山市| 江陵县| 普宁市| 平利县| 双辽市| 西盟| 衢州市| 贵德县| 永春县| 姚安县| 惠安县| http://m.44161598.cn http://m.39812803.cn http://m.57542293.cn http://m.39510279.cn http://m.24368502.cn http://m.21374032.cn